Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 386(2): 266-273, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348963

RESUMO

The alkylamine stimulant 1,3-dimethylamylamine (DMAA) is used nonmedically as an appetite suppressant and exercise performance enhancer despite adverse cardiovascular effects that have limited its legal status. There is scant research describing the mechanism of action of DMAA, making it difficult to gauge risks or therapeutic potential. An important molecular target of structurally related phenethylamines, such as amphetamine, for regulating mood, cognition, movement, and the development of substance use disorder is the dopamine transporter, which limits the range and magnitude of dopamine signaling via reuptake from the extracellular space. The present studies were therefore initiated to characterize the effects of DMAA on dopamine transporter function. Specifically, we tested the hypothesis that DMAA exhibits substrate-like effects on dopamine transporter function and trafficking. In transport assays in human embryonic kidney cells, DMAA inhibited dopamine uptake by the human dopamine transporter in a competitive manner. Docking analysis and molecular dynamics simulations supported these findings, revealing that DMAA binds to the S1 substrate binding site and induces a conformational change from outward-facing open to outward-facing closed states, similar to the known substrates. Further supporting substrate-like effects of DMAA, the drug stimulated dopamine transporter endocytosis in a heterologous expression system via cocaine- and protein kinase A-sensitive mechanisms, mirroring findings with amphetamine. Together, these data indicate that DMAA elicits neurologic effects by binding to and regulating function of the dopamine transporter. Furthermore, pharmacologic distinctions from amphetamine reveal structural determinants for regulating transporter conformation and add mechanistic insight for the regulation of dopamine transporter endocytosis. SIGNIFICANCE STATEMENT: The alkylamine stimulant 1,3-dimethylamylamine (DMAA) is used as an appetite suppressant and athletic performance enhancer and is structurally similar to amphetamine, but there is scant research describing its mechanism of action. Characterizing the effects of DMAA on dopamine transporter function supports evaluation of potential risks and therapeutic potential while also revealing mechanistic details of dynamic transporter-substrate interactions.


Assuntos
Depressores do Apetite , Cocaína , Humanos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Cocaína/farmacologia , Anfetamina/farmacologia , Fármacos do Sistema Nervoso Central
2.
Front Immunol ; 12: 639378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093527

RESUMO

Microglia, the resident brain phagocytes, likely play a key role in human immunodeficiency virus (HIV) infection of the central nervous system (CNS) and subsequent neuropathogenesis; however, the nature of the infection-induced changes that yield damaging CNS effects and the stimuli that provoke microglial activation remains elusive, especially in the current era of using antiretroviral (ARV) drugs for ARV therapy (ART). Altered microglial metabolism can modulate cellular functionality and pathogenicity in neurological disease. While HIV infection itself alters brain energy metabolism, the effect of ARV drugs, particularly those currently used in treatment, on metabolism is understudied. Dolutegravir (DTG) and emtricitabine (FTC) combination, together with tenofovir (TAF or TDF), is one of the recommended first line treatments for HIV. Despite the relatively good tolerability and safety profile of FTC, a nucleoside reverse transcriptase inhibitor, and DTG, an integrase inhibitor, adverse side effects have been reported and highlight a need to understand off-target effects of these medications. We hypothesized that similar to previous ART regimen drugs, DTG and FTC side effects involve mitochondrial dysfunction. To increase detection of ARV-induced mitochondrial effects, highly glycolytic HeLa epithelial cells were forced to rely on oxidative phosphorylation by substituting galactose for glucose in the growth media. We assessed ATP levels, resazurin oxidation-reduction (REDOX), and mitochondrial membrane potential following 24-hour exposure (to approximate effects of one dose equivalent) to DTG, FTC, and efavirenz (EFV, a known mitotoxic ARV drug). Further, since microglia support productive HIV infection, act as latent HIV cellular reservoirs, and when dysfunctional likely contribute to HIV-associated neurocognitive disorders, the experiments were repeated using BV2 microglial cells. In HeLa cells, FTC decreased mitochondrial REDOX activity, while DTG, similar to EFV, impaired both mitochondrial ATP generation and REDOX activity. In contrast to HeLa cells, DTG increased cellular ATP generation and mitochondrial REDOX activity in BV2 cells. Bioenergetic analysis revealed that DTG, FTC, and EFV elevated BV2 cell mitochondrial respiration. DTG and FTC exposure induced distinct mitochondrial functional changes in HeLa and BV2 cells. These findings suggest cell type-specific metabolic changes may contribute to the toxic side effects of these ARV drugs.


Assuntos
Alcinos/farmacologia , Fármacos Anti-HIV/farmacologia , Benzoxazinas/farmacologia , Ciclopropanos/farmacologia , Emtricitabina/farmacologia , Células Epiteliais/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Microglia/efeitos dos fármacos , Oxazinas/farmacologia , Piperazinas/farmacologia , Piridonas/farmacologia , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microglia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxazinas/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Latência Viral/efeitos dos fármacos , Xantenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...